Kunzang pisze:Bezpieczne dla nas, ale nie dla tych, co po nas - kwestia tego, jak się postrzega przestrzeń, czy sprowadza się ona do: jak to jest z tym na teraz; czy też sięga się trochę dalej w przestrzeń, od choćby do: warunków w jakich przyjdzie żyć naszym dzieciom, już bez naszej obecności pośród żywych...
Jeż pisze:A propos używania argumentów w dyskusji.
Można się do tego odnieść, jeśli pomyśli się o perspektywie następnych 100-500 lat.
Dlaczego nie myśleć o tym co będzie za 500 lat?
Odpowiedź:
Wszyscy żyjemy stale i żyliśmy od zarania dziejów w środowisku radioaktywnym, a nasze organizmy są do niego przystosowane. Dlatego w dyskusji o odpadach promieniotwórczych patrzmy na proporcje skutków działań człowieka i przyrody - i na tej podstawie dokonujmy ocen naszego postępowania.
Promieniowanie odpadów radioaktywnych ma małą energię i wystarcza niewielka grubość materiału osłonowego by je zatrzymać. Pojemniki, w których przewozi się odpady radioaktywne, są wyposażone w warstwy osłonowe z żelaza lub ołowiu, które zapewniają pełne bezpieczeństwo otoczenia przed promieniowaniem.
Radioaktywność po kilkunastu lub kilkudziesięciu latach zanika [Każdy rozpad radioaktywny oznacza, że jakieś jądro wysłało promieniowanie i przestało być radioaktywne. Dlatego aktywność odpadów jądrowych maleje z każdym dniem, miesiącem i rokiem, i odpady wymagające dzisiaj osłon stają się nieszkodliwe po upływie 10 czy 50 lat] i przestaje być problemem.
Zeszklone odpady wysokoaktywne [odpady dzielą się na niskoaktywne, średnioaktywne i wysokoaktywne. Np. dla cieczy odpady niskoaktywne to takie substancje, które przy spożyciu 1 litra powodują otrzymanie od 0,00001 do 0,1 rocznej dawki dopuszczalnej (RDD), średnioaktywne - od 0,1 do 100 RDD, a wysokoaktywne- powyżej 100 RDD], zawierające praktycznie wszystkie izotopy długożyciowe [w zależności od szybkości rozpadu promieniotwórczego, radioizotopy dzielimy na krótko życiowe (aktywność ich maleje dwukrotnie w ciągu sekund lub godzin), średnio życiowe – dnie i miesiące i długo życiowe – lata i setki lat], są zwykle zamykane w systemie wielu barier i umieszczane głęboko pod ziemią – stąd często stosowana nazwa składowiska głębinowego. W systemie tym stosuje się materiały naturalne, tak by układ składowiska geologicznego był maksymalnie podobny do środowiska naturalnego. Układ wielu kolejnych barier gwarantuje bezpieczeństwo – nawet, jeśli jedna z nich zawiedzie, pozostałe powstrzymają skutecznie rozchodzenie się materiałów radioaktywnych.
Co więcej, w minerałach z Oklo znaleziono produkty rozszczepienia takie jak neodymium, a nawet ksenon – gaz, który uwięziony w ziarnach fosforanów glinu pod rejonem grzęzawisk wodnych przetrwał przez blisko dwa miliardy lat! [5] Produkty rozszczepienia z reaktorów naturalnych w Oklo nie były przechowywane w złożach skalnych, nie były zamykane w pojemniki ani nie ulegały zeszkleniu – oddziaływała na nie woda (której obecność była niezbędna, by reaktory mogły zacząć pracę), znajdowały się tuż pod powierzchnią gruntu, narażone na wszelkie procesy mogące sprzyjać ich migracji – a mimo to pozostały na miejscu, dopóki nie uległy naturalnemu rozpadowi. Tylko te najtrwalsze – o bardzo, bardzo długich okresach rozpadu i odpowiednio bardzo, bardzo małej aktywności - świadczą dziś o tym, że reaktory naturalne działały naprawdę i że nie spowodowały skażeń radioaktywnych w okolicy.
Trzeba zaś pamiętać, że odpady z elektrowni węglowych nie są zamykane ani izolowane trwale od otoczenia. Część z nich ulatnia się w postaci popiołu lotnego, który spada w otoczeniu elektrowni – nieraz sięgając na duże odległości od punktu emisji – przedostaje się do gleby i rozpuszcza się w wodzie pitnej, a część pozostaje na filtrach elektrostatycznych i jest usuwana razem z popiołem dennym na okoliczne pola i hałdy. Oddzielanie odpadów ciekłych od otoczenia wykonuje się tak, by przegrody wystarczyły na kilkadziesiąt lat – i społeczeństwo godzi się z tym, nie zdając sobie sprawy, że chociaż odpady radioaktywne mogą rozpadać się wolno, to jednak z czasem aktywność ich zanika do zera, natomiast toksyczność arsenu, kadmu, rtęci czy ołowiu pozostaje zawsze taka sama, przez tysiące i miliony lat.
Aktywność odpadów radioaktywnych maleje z czasem, natomiast toksyczność odpadów ze spalania węgla pozostaje niezmiennie wysoka.
Aktywność odpadów maleje i z czasem potencjalne zagrożenie od nich jest mniejsze niż zagrożenie od pierwotnie wydobytej rudy uranowej. Tymczasem ruda jest wszędzie, również w miejscach wypłukiwanych przez wodę, którą pijemy, podczas gdy odpady są skutecznie odizolowane od człowieka. W rzeczywistości można oczekiwać, że odpady pozostaną izolowane na miejscu składowania na zawsze, tak jak pozostały na miejscu produkty rozszczepienia z naturalnych reaktorów w Oklo.
Zagrożenia radioaktywne można porównać z zagrożeniem toksycznym od produktów spalania węgla. Dopuszczalne stężenia usuwanych z popiołem i żużlem substancji toksycznych (kobalt, arszenik, rtęć, miedź, mangan, nikiel, wanad itd.) w wodzie pitnej są określone przez lekarzy i przepisy państwowe. Określone są także dopuszczalne stężenia substancji promieniotwórczych.
Warto pamiętać o tych krzywych rozważając minimalny czas trwałości pojemnika dla odpadów wysokoaktywnych, przyjmowany jako równy 1000 lat. Oznacza to, że w ciągu pierwszego tysiąca lat nie ma przecieków z pojemnika na zewnątrz, tak że zagrożenie względne należy porównywać tylko dla czasów dłuższych niż 1000 lat. Nawet potem, jeżeli pojemnik ulegnie rozszczelnieniu, możliwe wycieki substancji radioaktywnych do wód podziemnych będą powolne, a ruch tych wód także jest bardzo wolny. Minie dalsze 20 000- 100 000 lat zanim pierwsze przecieki substancji radioaktywnych rozpuszczonych w wodzie dotrą do wody pitnej [1].
Tak więc, nawet zakładając pełne rozpuszczenie odpadów promieniotwórczych w wodzie podziemnej, zagrożenie związane z odpadami wysoko aktywnymi będzie mniejsze niż zagrożenie związane z odpadami z elektrowni węglowych już po upływie 200 lat. A przecież odpady radioaktywne są starannie składowane, tak że pozostają odseparowane od biosfery nie przez 200 ale przez 20 000 lat i dłużej.
Co więcej, porównanie z pierwotnie istniejącym zagrożeniem powodowanym przez rudę uranową wykazuje, że nawet gdyby minimalne dawki promieniowania stwarzały zagrożenie nowotworowe – co jest bardzo wątpliwe – praca EJ nie powodowałaby wzrostu ogólnego zagrożenia radiologicznego na Ziemi. Już w chwili, gdy wskaźnik WZR dla odpadów wysoko aktywnych zmaleje do poziomu WZR dla rudy, zagrożenie radiologiczne jest zmniejszone, ponieważ ruda jest rozproszona w otwartych obszarach, często w styku z wodami podziemnymi, podczas gdy odpady wysoko aktywne są składowane w stabilnych formacjach geologicznych i odseparowane od środowiska. W dalszych latach WZR dla odpadów jest mniejszy niż pierwotny WZR dla rudy i w miarę upływu lat różnica między nimi stale rośnie. Tak więc praca EJ przyczynia się do zmniejszenia ogólnego tła promieniowania na Ziemi. Nie jest wcale pewne, czy powinniśmy do tego dążyć, bo wiele doświadczeń wykazało, że istniejące tło promieniowania jest niezbędne do życia organizmów żywych, ale przynajmniej można z całą pewnością stwierdzić, że praca EJ i składowanie odpadów promieniotwórczych NIE zwiększa średniego zagrożenia radiologicznego dla naszych prawnuków.
Znamy na to odpowiedź, bo dociekliwi naukowcy prześledzili drogi uwalniania się produktów radioaktywnych i przebieg ich rozpadu. Okazuje się, że w perspektywie od zera do pół miliona lat (chyba dość długo?) największe dawki spowoduje wydzielanie Tc-99 i wchłanianie go z wodą pitną. Maksymalne moce dawki wystąpią po 300 000 lat i wyniosą 0,012 mikroSv/rok [1]. Z czym takie dawki można porównać?
Miły czytelniku, czy śpisz na łóżku? Jeśli tak, a łóżko ma średnio wysokość 40 cm, to pomyśl, że mógłbyś spać na samym materacu, o wysokości np. 20 cm. A to oznacza, że będziesz niżej i zmniejszysz moc dawki o 0,02 mikroSv/rok, dwa razy więcej niż maksymalny przyrost dawki dla kogokolwiek powodowany przez odpady wysokoaktywne. A więc – bądźmy konsekwentni – skoro "zieloni" aktywiści grożą nam małymi dawkami promieniowania i zabraniają nam stosowania energii jądrowej "ze względów moralnych" to trzeba ze względów moralnych potępiać producentów łóżek znacznie bardziej niż inżynierów jądrowych!
Czy producenci łóżek i wózków dziecinnych są przestępcami, powodującymi setki zgonów w ciągu wieków? Czy też może – może powinniśmy nareszcie spojrzeć z właściwej perspektywy na minimalne wzrosty mocy dawki w różnych sytuacjach życiowych i uspokoić ludzi, by nie bali się składowania pod ziemią odpadów wysokoaktywnych?
Faktem jest, że energetyka jądrowa jest gałęzią przemysłu, która bierze pełną odpowiedzialność za swoje odpady, składuje je i zabezpiecza starannie na tysiąclecia. Zaczęliśmy nasze rozważania od koronnego zarzutu przeciwników energii jądrowej – od pozornie nierozwiązalnej sprawy odpadów radioaktywnych. Okazuje się, że przemysł jądrowy nie musi obawiać się tego pytania. Co więcej, jak wykazaliśmy powyżej, właśnie energetyka jądrowa daje przykład, jak troszczyć się o czystość środowiska i brać pełną odpowiedzialność za produkowane odpady. Można tylko życzyć sobie, by i inne gałęzie przemysłu podejmowały takie wysiłki i gwarantowały rozwiązanie techniczne równie bezpieczne dla środowiska.
"caly swiat jest radioaktywny" - Ł.Turski
http://www.atom.edu.pl/index.php/ekolog ... wisko.html
Jeż pisze:Adamie uderzasz nie w ten bęben. Moją myślą przewodnią jest, że zagrożenie energetyki jądrowej wiąże się z możliwością kataklizmu związanego z taką elektrownią. Wbrew temu, co podkreślają różni zwolennicy tejże, uważam, że takie zagrożenie istnieje w Polsce (mimo np. braku trzęsień ziemi). Zagrożenie stwarza sam człowiek -stwarza go polityka. W perspektywie kilku lat może być ono niewidoczne, ale czy uważasz, że nie ma ryzyka iż w ciągu następnych choćby 50 lat nie doczekamy aktu terroru związanego z taką elektrownią? Uważam to za prawdopodobne, co w moim odczuciu jest silnym argumentem za tym by zastanowić się nad tym sposobem produkcji energii.
Atak terrorystyczny jest oczywiście możliwy do wykonania, ale z dość starego już artykułu:
http://www.seren.org.pl/images/stories/ ... um_135.pdf
wynika, ze jest to niewiarygodnie trudne przy nowych reaktorach. Konstrukcja się zniszczy dopiero przy znacznym wybuchu jądrowym. Oprócz tego jednocześnie trzeba by spowodować awarie urządzeń wewnątrz reaktora.
Niestety z wczorajszego komunikatu UE na temat bezpieczeństwa elektrowni atomowych:
http://europa.eu/rapid/pressReleasesAct ... anguage=en
Wynika, ze trzeba jeszcze dużo pracy by zmodernizować starsze reaktory, a w nowych wprowadzić odpowiednie procedury.
Podsumowując:
jeżeli wprowadzi się obligatoryjnie odpowiednie systemy zabezpieczeń na wszystkie reaktory, to szansa na przeprowadzenie udanego ataku jest znikoma.
To jest szansa by Polska nie była znów na samym końcu. By nie była uzależniona od innych krajów. By sytuacja gospodarcza się poprawiła. Na dzień dzisiejszy nie ma lepszego rozwiązania.
Siec wiatraków połączona ze sobą (dająca nieprzerwanie energie) i współpracujące Państwa, to na dziś dzień zwykła fantazja.